Nickel-catalyzed site- and stereoselective reductive alkylalkynylation of alkynes
نویسندگان
چکیده
•A Ni-catalyzed regime for reductive alkylalkynylation of alkynes is described•Readily accessible N-(acyloxy)phthalimides are used as alkyl group donors•Stereodefined 1,3-enynes bearing diverse functional groups can be generated•The method amenable to cascade annulation transformations Despite key advances in multicomponent dicarbofunctionalization, additions remain limited, and examples involving sp-hybridized electrophiles have not been reported. An inherent challenge the high propensity alkynyl halide undergo undesired homocoupling side reactions, consequently suppressing product formation. As demonstrated here, a that selectively merges with readily available electrophilic bromides developed. This protocol enables access valuable structurally sophisticated stereodefined 1,3-enynes, which further derivatization other useful building blocks. The mechanistic insights derived from synergistic combination redox-active ester an organohalide expected provide practical solutions addressing longstanding problems catalytic systems employ multiple electrophiles. development reaction by orthogonal activation substrates streamlined di-functionalization compelling objective organic chemistry. Alkyne carboalkynylation, particular, offers direct entry different substitution patterns. Here, we show synthesis featuring trisubstituted olefin achieved merging alkynes, bromides, through nickel-catalyzed alkylalkynylation. Products generated up 89% yield single regio- E isomers. Transformations tolerant resulting elaboration synthetically With olefin-tethered N-(acyloxy)phthalimides, radical addition/cyclization/alkynylation process implemented obtain 1,5-enynes. study underscores crucial role esters superior donors compared haloalkanes alkyne dicarbofunctionalizations. Aliphatic carboxylic acids abundant feedstock chemicals found extensive utility chemical synthesis.1Straathof A.J. Transformation biomass into commodity using enzymes or cells.Chem. Rev. 2014; 114: 1871-1908Crossref PubMed Scopus (297) Google Scholar,2Patra T. Maiti D. Decarboxylation step C–C bond-forming reactions.Chemistry. 2017; 23: 7382-7401Crossref (207) Scholar recent cross-coupling chemistry, these molecules, were once regarded non-traditional cross-partners, emerged convenient decarboxylative transformations, either via innate carboxyl groups3Xuan J. Zhang Z.G. Xiao W.J. Visible-light-induced functionalization their derivatives.Angew. Chem. Int. Ed. Engl. 2015; 54: 15632-15641Crossref (531) Scholar, 4Kautzky J.A. Wang Evans R.W. MacMillan D.W.C. Decarboxylative trifluoromethylation aliphatic acids.J. Am. Soc. 2018; 140: 6522-6526Crossref (89) 5Till N.A. Smith R.T. hydroalkylation alkynes.J. 5701-5705Crossref (60) 6Rahman M. Mukherjee A. Kovalev I.S. Kopchuk D.S. Zyryanov G.V. Tsurkan M.V. Majee Ranu B.C. Charushin V.N. Chupakhin O.N. Santra S. Recent on reactions amino acids.Adv. Synth. Catal. 2019; 361: 2161-2214Crossref (40) 7McMurray L. McGuire T.M. Howells R.L. photocatalytic coupling medicinal chemistry.Synthesis. 2020; 52: 1719-1737Crossref (19) 8Mega R.S. Duong V.K. Noble Aggarwal conjunctive vinyl boronic metallaphotoredox catalysis.Angew. 59: 4375-4379Crossref (41) 9Wang H. Liu C.F. Song Z. Yuan Ho Y.A. Gutierrez O. Koh M.J. Engaging ?-fluorocarboxylic directly bond formation.ACS 10: 4451-4459Crossref (15) 10Yue Zhu C. Kancherla R. F. Rueping Regioselective Arylalkylation photoredox/nickel dual catalysis: application mechanism.Angew. 5738-5746Crossref activated derivatives.11Cornella Edwards J.T. Qin Kawamura Pan C.M. Gianatassio Schmidt Eastgate M.D. Baran P.S. Practical aryl-alkyl secondary esters.J. 2016; 138: 2174-2177Crossref (270) 12Qin Cornella Li Malins L.R. Maxwell B.D. A general alkyl-alkyl enabled alkylzinc reagents.Science. 352: 801-805Crossref (413) 13Edwards Merchant R.R. McClymont K.S. Knouse K.W. Vokits B. Shaw S.A. Bao D.-H. Wei F.-L. et al.Decarboxylative alkenylation.Nature. 545: 213-218Crossref (202) 14Huang Olivares A.M. Weix D.J. Reductive alkynylation N-Hydroxyphthalimide bromoalkynes.Angew. 56: 11901-11905Crossref (73) 15Sandfort O'Neill Wimmer Alkyl-(hetero)aryl formation cross-coupling: systematic analysis.Angew. 3319-3323Crossref (64) 16Smith J.M. Che G. Shen alkynylation.Angew. 11906-11910Crossref (96) 17Murarka reactions.Adv. 360: 1735-1753Crossref (164) 18Ni Garrido-Castro A.F. de Gruyter J.N. Schmitt D.C. Mousseau J.J. Gallego G.M. Yang Collins M.R. Qiao J.X. al.A acid cross-coupling.Angew. 57: 14560-14565Crossref 19Chen T.G. Mykhailiuk P.K. C.A. Quaternary centers tertiary (hetero)aryl zinc reagents.Angew. 58: 2454-2458Crossref (43) 20Ishii Kakeno Y. Nagao K. Ohmiya N-heterocyclic carbene-catalyzed alkylation aldehydes.J. 141: 3854-3858Crossref (99) 21Ni Padial N.M. Kingston Vantourout J.C. Kruszyk M.M. Sanchez B.B. approach anionic chemistry: ketones, alcohols, amines.J. 6726-6739Crossref (82) 22Wang Cary B.P. Beyer P.D. Gellman S.H. Ketones decarboxylative, non-symmetric cross-electrophile esters.Angew. 12081-12085Crossref (46) 23Kakeno Kusakabe Direct dialkyl ketones aldehydes carbene catalysis.ACS 8524-8529Crossref (35) These developments driven much wider commercial availability conventional halides alkylmetal reagents.12Qin Scholar,22Wang Scholar,24Johnston C.P. Allmendinger D.W. Metallaphotoredox-catalysed sp3-sp3 halides.Nature. 536: 322-325Crossref (273) related class utilize (or NHPI esters) involve alkynes25Dai G.L. Lai S.Z. Luo Tang Z.Y. Selective syntheses Z-alkenes photocatalyzed terminal arylalkynes.Org. Lett. 21: 2269-2272Crossref (27) alkenes.26Chu Ohta Zuo Carboxylic traceless conjugate additions: three-step (+/?)-pregabalin.J. 136: 10886-10889Crossref (347) 27Jian W. Ge Jiao Qian Iron-catalyzed etherification Vinylarenes source.Angew. 3650-3654Crossref (90) 28Qin Novak Zhong J.Z. Mills R.B. Yan Nickel-catalyzed Barton decarboxylation Giese reactions: take classic transforms.Angew. 260-265Crossref (159) 29Tlahuext-Aca Garza-Sanchez R.A. Glorius Multicomponent oxyalkylation styrenes hydrogen-bond-assisted photoinduced electron transfer.Angew. 3708-3711Crossref (115) 30Bloom Kölmel D.K. Poss M.A. Ewing W.R. site-selective bioconjugation native proteins oxidation potentials.Nat. 205-211Crossref (171) 31Tlahuext-Aca Schäfer Visible-light-mediated oxidative styrenes.Org. 20: 1546-1549Crossref (51) 32Wang G.Z. Shang Fu Irradiation-induced palladium-catalyzed heck at room temperature.Org. 888-891Crossref (118) 33Wang Lundberg Asai Martín-Acosta P. Chen J.S. Brown Farrell Dushin R.G. O'Donnell C.J. Ratnayake A.S. al.Kinetically guided radical-based C(sp3)-C(sp3) linkages DNA.Proc. Natl. Acad. Sci. USA. 115: E6404-E6410Crossref 34Guo J.Y. Guan Mao L.W. Ban Q. Zhao Loh T.P. Photoredox-catalyzed stereoselective enamides N-hydroxyphthalimide reactions.Chem. 8792-8798Crossref 35Ishii Ota relay enabling vicinal alkylacylation alkenes.J. 14073-14077Crossref (80) 36Dang H.T. Haug G.C. Nguyen V.T. Vuong N.T.H. V.D. Arman H.D. Larionov O.V. Acridine photocatalysis: mechanism dual-catalytic addition.ACS 11448-11457Crossref (10) 37Huang H.-M. Koy Serrano E. Pflüger P.M. Schwarz J.L. Catalytic generation ?-allylpalladium complexes.Nat. 3: 393-400Crossref Intrigued previous studies, speculated if could exploited three-component processes deliver acyclic 1,3-enyne motifs, conjugated entities commonly embedded within natural products, pharmaceuticals, agrochemicals, materials.38Zein N. Sinha McGahren Ellestad G.A. Calicheamicin gamma 1I: antitumor antibiotic cleaves double-stranded DNA site specifically.Science. 1988; 240: 1198-1201Crossref (550) 39Nussbaumer Leitner I. Mraz Stütz Synthesis structure-activity relationships side-chain-substituted analogs allylamine antimycotic terbinafine lacking central function.J. Med. 1995; 38: 1831-1836Crossref (117) 40Myers A.G. Hammond Wu Xiang Harrington Kuo E.Y. Enantioselective neocarzinostatin chromophore aglycon.J. 1996; 118: 10006-10007Crossref (67) 41Hussain Green I.R. Krohn Ahmed Advances total biologically important callipeltosides: review.Nat. Prod. Rep. 2013; 30: 640-693Crossref (4) 42Ma X. Banwell M.G. Willis A.C. Chemoenzymatic phytotoxic geranylcyclohexentriol (-)-phomentrioloxin.J. Nat. 76: 1514-1518Crossref (24) Various routes architecturally analogous contain alkene moiety43Cornelissen Lefrancq Riant Copper-catalyzed vinylsiloxanes bromoalkynes: enynes.Org. 16: 3024-3027Crossref (63) 44Che Zheng trans-carbohalogenation functionalized halides.Org. 17: 1617-1620Crossref (52) 45Cheung C.W. Hu Stereoselective alkenes sequential iron-catalyzed anti-carbozincation base-metal-catalyzed negishi cross-coupling.Chemistry. 18439-18444Crossref (32) 46Lee J.T.D. Access Z-enediynes trimerization: cooperative bimetallic catalysis air oxidant.Angew. 55: 13872-13876Crossref 47Rivada-Wheelaghan Chakraborty Shimon L.J.W. Ben-David Milstein Z-selective (cross-)dimerization catalyzed iron complex.Angew. 6942-6945Crossref (74) 48Trost B.M. Masters Transition metal-catalyzed couplings 1,3-enynes: modern methods synthetic applications.Chem. 45: 2212-2238Crossref 49Wang N.N. Huang Hao T.S. Tu S.J. Jiang Synergistic rhodium/copper N-aryl enaminones.Org. 18: 1298-1301Crossref 50Zhou transition-metal-catalyzed Biomol. 14: 6638-6650Crossref 51Gorgas Alves L.G. Stöger Martins Veiros L.F. Kirchner Stable, yet highly reactive nonclassical iron(II) polyhydride pincer complexes: dimerization hydroboration 139: 8130-8133Crossref 52Yan X.A. Xie hydroarylation 1,3-diynes dimeric manganese catalyst: modular Z-enynes.Angew. 12906-12910Crossref 53Ye Su dehydrative propargyl alcohol peroxides form substituted 1,3-enynes.Org. 3202-3205Crossref (26) 54Cembellín Dalton Pinkert Schäfers Highly selective pyrroles, furans manganese(I) C–H activation.ACS 197-202Crossref (37) developed, but majority them focused two-component elaborated alkynes/alkenes starting materials.43Cornelissen Scholar,47Rivada-Wheelaghan Scholar,48Trost Scholar,51Gorgas Scholar,54Cembellín Three-component regimes44Che Scholar,49Wang simpler, more offer expeditiously assemble desired products. However, suffer number shortcomings. Activated ?-functionalized frequently employed generate stabilized species addition,44Che second catalyst sometimes required promote C(sp)–C(sp2) formation44Che Scholar,45Cheung limits broad utility. growing dicarbofunctionalization pertain regioselective addition carbogenic groups, stable organohalides and/or (versus sensitive organometallic reagents55Dhungana R.K. Kc Basnet Giri unactivated olefins.Chem. Rec. 1314-1340Crossref (182) Scholar,56Derosa Apolinar Kang Tran Engle K.M. intermolecular alkenes.Chem. 11: 4287-4296Crossref Scholar), across ? bonds presence mild reducing agent.57García-Domínguez Nevado 6835-6838Crossref (190) 58Shu García-Domínguez Quirós M.T. Mondal Cárdenas nonactivated alkenes: scope insights.J. 13812-13821Crossref (88) 59Zhao H.Y. Guo Qing F.L. Chu Intermolecular carboacylation relay.Nat. Commun. 9: 3488Crossref 60Yang Rao Broadly applicable directed difunctionalization alkenyl carbonyl compounds.Chem. 6: 738-751Abstract Full Text PDF (34) 61Wei Shu Merino Asymmetric relayed coupling.J. 142: 13515-13522Crossref 62Tu Huo fluoroalkylarylation olefins 9604-9611PubMed 63Yang Lim J.J.H. Lan Chemoselective union olefins, organohalides, dialkylation.J. 21410-21419Crossref To date, most alkyl-functionalization alkyl-aryl alkyl-alkenyl iodo- bromoalkanes donor (Scheme 1A). In contrast, corresponding severely underdeveloped restricted alkyl-arylations organoiodide reagents.57García-Domínguez One arises haloalkyne electrophile facile Ni-based complex, inadvertently pathway 1A, inset; see Scheme 4 discussion). Notwithstanding limitations, reasoned alkyne, halide, under appropriate conditions give simultaneous control stereoselectivity 1B). Our motivation pursue this 2-fold: (1) greater variety halides) means units (tertiary, secondary, primary) incorporated; (2) ability challenging alkylalkynylations fail deliver, minimizing rampant pathways arising homocoupling64Chen Transition-metal-free 1-haloalkynes: symmetrical 1,3-diynes.J. Org. 2010; 75: 6700-6703Crossref Scholar,65Ping Ding Zhou Kong Regio- enantioselective domino cyclization: one-pot 2,3-fused cyclopentannulated indolines.ACS 7335-7342Crossref (30) cross-coupling14Huang Scholar,16Smith reactants, well cyclotrimerization66Orsino Gutiérrez Del Campo Lutz Moret M.E. Enhanced activity nickel complexes adaptive diphosphine-benzophenone ligand cyclotrimerization.ACS 2458-2481Crossref (16) Herein, disclose first accomplishes efficient donors. Examination 1a (1 equiv), 2a (1.2 3a (2.5 equiv) showed 4a obtained 67% GC (>95% selectivity) 10 mol % complex NiBr2·diglyme L1, Mn DMA solvent ambient (Table 1, 1). Switching agent Zn tetrakis(dimethylamino)ethylene (TDAE) led poor yields excessive by-product entries 2 3). Other less effective promoting 4), while electron-rich bipyridine phenanthroline ligands L2?L8 afforded unsatisfactory 5). Changing polar solvents also did improve results 6).Table 1Evaluation conditionsEntryDeviation standard conditionsConversion (%)aReactions performed 0.1 mmol scale. Conversions (based consumption 1a) determined analysis. Value parentheses denotes isolated yield.Yield yield.1none78672Zn instead Mn>95163TDAE Mn36<54Ni(cod)2, NiCl2·glyme NiI2 NiBr2·glyme74–8139–575L2-L8 L131–82<5–556MeCN, DMF DMSO DMA25–82<5–417TMSCl (0.5 added77258ZnCl2 added50159MgBr2 added683610LiBr added8576 (73)Abbreviations: DMA, N,N-dimethylacetamide; DMF, N,N-dimethylformamide; DMSO, dimethyl sulfoxide; cod, 1,5-cyclooctadiene; TDAE, tetrakis(dimethylamino)ethylene; TMSCl, trimethylsilyl chloride; RT, temperature.a Reactions yield. Open table new tab Abbreviations: temperature. order enhance efficiency suppress forma
منابع مشابه
Stereoselective cobalt-catalyzed halofluoroalkylation of alkynes
Stereoselective additions of highly functionalized reagents to available unsaturated hydrocarbons are an attractive synthetic tool due to their high atom economy, modularity, and rapid generation of complexity. We report efficient cobalt-catalyzed (E)-halofluoroalkylations of alkynes/alkenes that enable the construction of densely functionalized, stereodefined fluorinated hydrocarbons. The mild...
متن کاملSilver‐Catalyzed Stereoselective Aminosulfonylation of Alkynes
A silver-catalyzed intermolecular aminosulfonylation of terminal alkynes with sodium sulfinates and TMSN3 is reported. This three-component reaction proceeds through sequential hydroazidation of the terminal alkyne and addition of a sulfonyl radical to the resultant vinyl azide. The method enables the stereoselective synthesis of a wide range of β-sulfonyl enamines without electron-withdrawing ...
متن کاملOrigins of regioselectivity and alkene-directing effects in nickel-catalyzed reductive couplings of alkynes and aldehydes.
The origins of reactivity and regioselectivity in nickel-catalyzed reductive coupling reactions of alkynes and aldehydes were investigated with density functional calculations. The regioselectivities of reactions of simple alkynes are controlled by steric effects, while conjugated enynes and diynes are predicted to have increased reactivity and very high regioselectivities, placing alkenyl or a...
متن کاملStereoselective Gold(I)-Catalyzed Intermolecular Hydroalkoxlation of Alkynes
We report the use of cationic gold complexes [Au(NHC)(CH3CN)][BF4] and [{Au(NHC)}2(μ-OH)][BF4] (NHC = N-heterocyclic carbene) as highly active catalysts in the solvent-free hydroalkoxylation of internal alkynes using primary and secondary alcohols. Using this simple protocol, a broad range of (Z)-vinyl ethers were obtained in excellent yields and high stereoselectivities. The methodology allows...
متن کاملCobalt-catalyzed reductive coupling of activated alkenes with alkynes.
Cobalt complex/Zn systems effectively catalyze the reductive coupling of activated alkenes with alkynes in the presence of water to give substituted alkenes with very high regio- and stereoselectivity in excellent yields. While the intermolecular reaction of acrylates, acrylonitriles, and vinyl sulfones with alkynes takes place in the presence of CoI2(PPh3)2/Zn, the reaction of enones and enals...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chem
سال: 2021
ISSN: ['2451-9308', '2451-9294']
DOI: https://doi.org/10.1016/j.chempr.2020.12.024